List of publications associated with EVAHEART LVAS
-- 56 publications listed below (as of December-2024) --
Martinez, J., Smegner, K., Tomoda, M., Motomura, T., & Chivukula, V. K. (2024). Encouraging Regular Aortic Valve Opening for EVAHEART 2 LVAD Support Using Virtual Patient Hemodynamic Speed Modulation Analysis. ASAIO journal (American Society for Artificial Internal Organs : 1992), 70(3), 207–216. https://doi.org/10.1097/MAT.0000000000002093
COMPETENCE Trial: The EVAHEART 2 continuous flow left ventricular assist device. Allen SR, Slaughter MS, Ahmed MM, Bartoli CR, Dhingra R, Egnaczyk GF, Gulati SK, Kiernan MS, Mahr C, Meyer DM, Motomura T, Ono M, Ravichandran A, Shafii A, Smith J, Soleimani B, Toyoda Y, Yarboro LT, Dowling RD. J Heart Lung Transplant. 2022 Oct 19:S1053-2498(22)02180-5. doi: 10.1016/j.healun.2022.10.011. Online ahead of print.
https://www.jhltonline.org/article/S1053-2498(22)02180-5/fulltext
Ushijima, T., Tanoue, Y., Sonoda, H., Kan-O, M., Oda, S., Kimura, S., Hashimoto, T., Fujino, T., & Shiose, A. (2022). Potential of the EVAHEART 2 Double-Cuff Tipless Inflow Cannula for Prevention of Thromboembolic Events. ASAIO journal (American Society for Artificial Internal Organs), 10.1097/MAT.0000000000001672. Advance online publication. https://doi.org/10.1097/MAT.0000000000001672
https://pubmed.ncbi.nlm.nih.gov/35239535/
Decreased RPM reduces von Willebrand factor degradation with the Evaheart LVAS: implications for device-specific LVAD management. J Card Surg. 2020;35:1477–1483. (C. Bartoli, J. Kang, T. Motomura)
https://pubmed.ncbi.nlm.nih.gov/32652785/
EVAHEART 2 Left Ventricular Assist System: A Hemocompatible Centrifugal Pump with Physiological Pulsatility. T. Motomura. Springer Book Chapter: Mechanical Support for Heart Failure (2020 In Press)
Mechanical Circulatory Support, Second Edition. Oxford University Press. Jan 2020. (Joyce, David L; Joyce, Lyle D)
https://global.oup.com/academic/product/mechanical-circulatory-support-9780190909291?cc=us&lang=en&#
First clinical experience with the double cuff tipless inflow cannula in the EVAHEART left ventricular assist system: Case report. Artificial Organs 2019 Nov 27. doi: 10.1111/aor.13588. (Kawamura A, Toda K, Sawa Y)
https://www.ncbi.nlm.nih.gov/pubmed/31775177Reducing regional flow stasis and improving intraventricular hemodynamics with a tipless inflow cannula design: An in vitro flow visualization study using the EVAHEART LVAD. Artif Organs. 2019 Apr 30. doi: 10.1111/aor.13477. (May-Newman K, Montes R, Campos J, Marquez-Maya N, Vu V, Zebrowski E, Motomura T, Benkowski R.)
https://www.ncbi.nlm.nih.gov/pubmed/31038753In vitro comparison of the hemocompatibility of two centrifugal left ventricular assistdevices. J Thorac Cardiovasc Surg. 2019 Feb;157(2):591-599.e4. doi: 10.1016/j.jtcvs.2018.07.085. Epub 2018 Aug 6. (Zayat R., Moza A., Grottke O., Grzanna T., Fechter T., Motomura T., Schmidt-Mewes C., Breuer T., Autschbach R., Rossaint R., Goetzenich A., Bleilevens C.)
https://www.ncbi.nlm.nih.gov/pubmed/30414772Surgical Techniques for Implanting the EVAHEART 2 Double Cuff Tipless Inflow Cannula. ASAIO Journal Online: October 31, 2018 – doi: 10.1097/MAT.0000000000000914. (Motomura, Tadashi; Kelly, Brian)
https://www.ncbi.nlm.nih.gov/pubmed/30394886Preclinical Evaluation of the EVAHEART 2 Centrifugal Left Ventricular Assist Device in Bovines. ASAIO Journal Online: August 16, 2018 - doi: 10.1097/MAT.0000000000000869. (Motomura, Tadashi; Tuzun, Egemen; Yamazaki, Kenji; Tatsumi, Eisuke; Benkowski, Robert; Yamazaki, Shunichi)
https://www.ncbi.nlm.nih.gov/pubmed/30134258Virtual Fitting and Hemodynamic Simulation of the EVAHEART 2 Left Ventricular Assist Device and Double-Cuff Tipless Inflow Cannula. ASAIO Journal Online: August 21, 2018 - doi: 10.1097/MAT.0000000000000867. (Sonntag, S; Zebrowski, E; Neidlin, M; Hugenroth, K; Benkowski, R; Motomura, T; Kaufmann, T)
https://www.ncbi.nlm.nih.gov/pubmed/30134259Long-Term Durability Test for the Left Ventricular Assist System EVAHEART under the Physiologic Pulsatile Load. ASAIO J. 2018 Mar/Apr;64(2):168-174. (Kitano T, Iwasaki K.)
https://www.ncbi.nlm.nih.gov/pubmed/28863038The Effect of Inflow Cannula Angle on the Intraventricular Flow Field of the Left Ventricular Assist Device-Assisted Heart: An In Vitro Flow Visualization Study. ASAIO J. 2018 Mar 30. doi: 10.1097 (May-Newman K, Marquez-Maya N, Montes R, Salim S.)
https://www.ncbi.nlm.nih.gov/pubmed/29613888Left heart pressures can be the key to know the limitation of left ventricular assist device support against progression of aortic insufficiency. J Artif Organs. 2018 Feb 20. doi: 10.1007 (Iizuka K, Nishinaka T, Naito N, Akiyama D, Takewa Y, Yamazaki K, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/29464441Rotational speed modulation used with continuous-flow left ventricular assist device provides good pulsatility. Interact Cardiovasc Thorac Surg. 2018 Jan 1;26(1):119-123 (Naito N, Nishimura T, Iizuka K, Takewa Y, Umeki A, Ando M, Ono M, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/29049782The Effect of Inlet Cannula Length on the Intraventricular Flow Field: An In Vitro Flow Visualization Study Using the Evaheart Left Ventricular Assist Device. ASAIO Journal 2017 Sep/Oct;63(5):592-603. (Karen May-Newman, Juyeun Moon, Varsha Ramesh, Ricardo Montes, Josue Campos, Brian Herold, Paul Isingoma, Tadashi Motomura)
https://www.ncbi.nlm.nih.gov/pubmed/28328554The influence of pump rotation speed on hemodynamics and myocardial oxygen metabolism in left ventricular assist device support with aortic valve regurgitation. J Artif Organs 2017 Sep;20(3):194-199. (Iizuka K, Nishinaka T, Takewa Y, Yamazaki K, Tatsumi E)
https://www.ncbi.nlm.nih.gov/pubmed/28429120Three-dimensional replica of corrected transposition of the great arteries for successful heart transplantation. J Artif Organs. 2017 Sep;20(3):289-291. (Fujita T, Fukushima S, Fukushima N, Shiraishi I, Kobayashi J.)
https://www.ncbi.nlm.nih.gov/pubmed/28361206Preservation of von Willebrand factor multimers and function in patients with an EVAHEART centrifugal-type, continuous-flow left ventricular assist device. The Journal of Heart and Lung Transplantation 2017 Jul;36(7):814-817. (Ichihara Y, Nishinaka T, Komagamine M, Yamada Y, Yamazaki K.)
https://www.ncbi.nlm.nih.gov/pubmed/28495445Left Ventricular Assist Device Design Reduces von Willebrand Factor Degradation: A Comparative Study Between the HeartMate II and the EVAHEART Left Ventricular Assist System. Ann Thorac Surg. 2017 Apr;103(4):1239-1244. (Carlo R. Bartoli, Jooeun Kang, David Zhang, Jessica Howard, Michael Acker, Pavan Atluri, Tadashi Motomura)
https://www.ncbi.nlm.nih.gov/pubmed/27717422Correlation between driveline features and driveline infection in left ventricular assist device selection. Artif Organs. 2017 Mar;20(1):34-41. (Imamura T, Murasawa T, Kawasaki H, Kashiwa K, Kinoshita O, Nawata K, Ono M.)
https://www.ncbi.nlm.nih.gov/pubmed/27448017Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device. J Artif Organs. 2017 Mar;20(1):18-25. (Date K, Nishimura T, Arakawa M, Takewa Y, Kishimoto S, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/27436097Centrifugal Pump EVAHEART Prevents Development of Aortic Insufficiency Preserving Pulse Pressure. International Heart Journal Vol. 57 (2016) No. 1 p. 127-128. (Teruhiko Imamura, Koichiro Kinugawa)
https://www.ncbi.nlm.nih.gov/pubmed/26742704What Is the Optimal Setting for a Continuous-Flow Left Ventricular Assist Device in Severe Mitral Regurgitation? Artif Organs. 2016 Nov;40(11):1039-1045. (Naito N, Nishimura T, Takewa Y, Kishimoto S, Date K, Umeki A, Ando M, Ono M, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/27199010Influence of a Rotational Speed Modulation System Used With an Implantable Continuous-Flow Left Ventricular Assist Device on von Willebrand Factor Dynamics. Artificial Organs 2016, 40(9): 877 – 883. (Naito N, Mizuno T, Nishimura T, Kishimoto S, Takewa Y, Eura Y, Kokame K, Miyata T, Date K, Umeki A, Ando M, Ono M, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/26750507Pulsatile support using a rotary left ventricular assist device with an electrocardiography-synchronized rotational speed control mode for tracking heart rate variability. J Artif Organs. 2016 Jun;19(2):204-7. (Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y, Kishimoto S, Fujii Y, Date K, Kyo S, Adachi H, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/26608806Influence of a novel electrocardiogram-synchronized rotational-speed-change system of an implantable continuous-flow left ventricular assist device (EVAHEART) on hemolytic performance. J Artif Organs. 2014 Dec;17(4):373-7. (Kishimoto S, Date K, Arakawa M, Takewa Y, Nishimura T, Tsukiya T, Mizuno T, Katagiri N, Kakuta Y, Ogawa D, Nishimura M, Tatsumi E.)
https://www.ncbi.nlm.nih.gov/pubmed/25178643EVAHEART: A Japanese multicenter study using J-MACS, The Journal of Heart and Lung Transplantation 2014; 33:599–608.
(Satoshi Saito, Kenji Yamazaki, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/24746637Development of a novel drive mode to prevent aortic insufficiency during continuous-flow LVAD support by synchronizing rotational speed with heartbeat. Journal of Artificial Organs 2013 ; 16 (2) 129-137.
(Yuichiro Kishimoto, Yoshiaki Takewa, Mamoru Arakawa, Akihide Umeki, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/23340818Change in myocardial oxygen consumption employing continuous-flow LVAD with cardiac beat synchronizing system, in acute ischemic heart failure models. Journal of Artificial Organs 2013; 16 (2) 119-128.
(Akihide Umeki, Takashi Nishimura, Yoshiaki Takewa, Masahiko Ando, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/23324904Preliminary study on the development of a system dynamics model: the case of EVAHEART. Journal of Artificial Organs. Volume 16, Number 2, 2013 pp242-247. (Tsugiko Kato, Mitsuo Umez, Kiyotaka Iwasaki, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/23420496Japanese Experience of EVAHEART TM Left Ventricular Assist System. The Journal of Heart and Lung Transplantation; 2013 April; 32 (4) Supplement, Pages S11-S12. (S. Saito, T. Nishinaka, Y. Ichihara, M. Komagamine, et al.)
https://www.jhltonline.org/article/S1053-2498(13)00020-X/pdfGastrointestinal Bleeding Was Rare with Centrifugal Type Continuous Flow Left Ventricular Assist Device EVAHEART. April 2013 The Journal of Heart and Lung Transplantation Vol. 32, Issue 4, Supplement, Pages S233-S234.
(Y. Ichihara, T. Nishinaka, M. Komagamine, Y. Yamada, et al.)
https://www.jhltonline.org/article/S1053-2498(13)00609-8/abstractA novel counterpulse drive mode of continuous-flow left ventricular assist devices can minimize intracircuit backward flow during pump weaning. Journal of Artificial Organs 2011: 14 (1) 74-79. (Masahiko Ando, Takashi Nishimura, Yoshiaki Takewa, Daisuke Ogawa, Kenji Yamazaki, Koichi Kashiwa, Shunei Kyo,Minoru Ono, Yoshiyuki Taenaka, Eisuke Tatsumi)
https://www.ncbi.nlm.nih.gov/pubmed/21243383What is the ideal off-test trial for continuous-flow ventricular-assist-device explantation? Intracircuit back-flow analysis in a mock circulation model. Journal of Artificial Organs 2011; 14 (1) 70-73. (Masahiko Ando, Takashi Nishimura, Yoshiaki Takewa, Daisuke Ogawa, Kenji Yamazaki, Koichi Kashiwa, Shunei Kyo,Minoru Ono, Yoshiyuki Taenaka, Eisuke Tatsumi)
https://www.ncbi.nlm.nih.gov/pubmed/21243384Long-Term Durable Implantable Centrifugal Blood Pump: EVAHEART Left Ventricular Assist System. Journal of Heart and Lung Transplantation 2011; 30 (4) S85-S85. (T. Nishinaka, K. Yamazaki, S. Saito, H. Tsukui, T. Nakatani, J. Kobayashi, G. Matsumiya, Y. Sawa, T. Nishimura, M. Ono, S. Kyo, S. Kitamura)
https://www.jhltonline.org/article/S1053-2498(11)00247-6/abstractNext Generation Centrifugal Left Ventricular Assist Device EVAHEART. Journal: Journal of Cardiac Failure. J CARD FAIL2010: 16 (9) S144-S144. (Tomohiro Nishinaka)
https://www.onlinejcf.com/article/S1071-9164(10)00781-5/abstractCompletely Pulsatile high flow circulatory support with a constant speed centrifugal blood pump: mechanisms and early clinical observations. General Thoracic and Cardiovascular Surgery 2007, Vol. 55, No. 4: 158-162. (Yamazaki K, Saito S, Kihara S, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/17491351Preclinical biocompatibility assessment of the EVAHEART ventricular assist device: coating comparison and platelet activation. J Biomed Mater Res A. 2007 Apr; 81(1):85-92. (Snyder TA, Tsukui H, Kihara S, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/17109415
Bridge-to-bridge conversion from Nipro-LVAS to EVAHEART implantable LVAS in a patient with severe acute myocardial infarction. Journal of Artificial Organs. Volume 16, Number 2, 2013 pp263-265.
(Masao Yoshitatsu, Takafumi Masai, Junya Yokoyama, et al.)https://pubmed.ncbi.nlm.nih.gov/23397122/
Bioengineering Advances and Cutting-edge Technology. 13th International Conference on Biomedical Engineering. IFMBE Proceedings Volume 23, 2009: 2143-2146. (M. Umezu)
https://link.springer.com/chapter/10.1007/978-3-540-92841-6_535
Japanese Clinical Trial Results of Next Generation LVAS EVAHEART. Journal: Cvd Prevention and Control. 2009 (4) S29-S29.S17-4 (Kenji Yamazaki)
https://onlinejcf.com/article/S1071-9164(09)00751-9/abstract
Japanese Clinical Trial Results of New Generation LVAS EVAHEART (Citations: 1). Journal: Journal of Cardiac Failure – J CARD FAIL 2009; 15 (7) S147-S147. (Kenji Yamazaki, Satoshi Saito, Tomohiro Nishinaka, Takeshi Nakatani, Soichiro Kitamura, Goro Matsumiya, Yoshiki Sawa,Takashi Nishimura, Minoru Ono, Shunei Kyo)
https://onlinejcf.com/article/S1071-9164(09)00751-9/abstract
Japanese Clinical trial results of an Implantable Centrifugal Blood Pump “EVAHEART”, Journal Heart and Lung Transl 2008; 27(2), S246. (Yamazaki K, Saito S, Nishinaka T, et al.)
https://www.jhltonline.org/article/S1053-2498(07)01370-8/abstract
Mechanical circulatory support devices (MCSD) in Japan: current status and future directions. Artificial Organs 2005; 8(1):13–27.
(Takatani S. Matsuda H, et al.)https://pubmed.ncbi.nlm.nih.gov/15951976/
A Comparative Study Between Flow Visualization and Computational Fluid Dynamic Analysis for the Sun Medical Centrifugal Blood Pump. Artificial Organs 2004; 28(5): 458-466. (Yamane T, Miyamoto Y, Tajima K, Yamazaki K.)
https://pubmed.ncbi.nlm.nih.gov/15113340/
Distal thoracic aorta hemodynamics during exercise with continuous flow left ventricular assist system. Eur J Cardiothoracic Surg 2003; 24(6):926-31. (Kihara S, Yamazaki K, Litwak KN, et al.)
https://pubmed.ncbi.nlm.nih.gov/14643810/
In vivo evaluation of a MPC polymer coated continuous flow left ventricular assist system. Artificial Organs 2003; 27(2):188-92. (Kihara S, Yamazaki K, Litwak KN, et al.)
https://pubmed.ncbi.nlm.nih.gov/12580778/
EVAHEART: an implantable centrifugal blood pump for long-term circulatory support. Jpn J Thorac Cardiovasc Surg, 2002; 50(11):461-5. (Yamazaki K, Kihara S, Akimoto T, et al.)
https://pubmed.ncbi.nlm.nih.gov/12478865/
The role of diastolic pump flow in centrifugal blood pump hemodynamics. Artificial Organs 2001; 25(9):724-7.
(Akimoto T, Litwak KN, Yamazaki K, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/11722350Continuously Maintaining Positive Flow Avoids Endocardial Suction of a Rotary Blood Pump With Left Ventricular Bypass. Artificial Organs 2000 Aug; 24(8):606-10. (Akimoto T, Yamazaki K, Litwak P, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/10971245Rotary blood pump flow spontaneously increases during exercise under constant pump speed: results of a chronic study., Artif Organs. 1999 Aug;23(8):797-801. (Akimoto T, Yamazaki K, Litwak P, Litwak KN, Tagusari O, Mori T, Antaki JF, Kameneva MV, Watach MJ, Umezu M, Tomioka J, Kormos RL, Koyanagi H, Griffith BP.)
https://www.ncbi.nlm.nih.gov/pubmed/104635107An implantable blood pump with a recirculating purge system (Cool-Seal system), Artificial Organs 1998; 22:466-474.
(Yamazaki K, Litwak P, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/9650667An implantable centrifugal blood pump for long term circulatory support. ASAIO J, Sep-Oct 1997, 43(5) pM686-91.
(Yamazaki K, Litwak P, Kormos RL, et al.)
https://www.ncbi.nlm.nih.gov/pubmed/9360134The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps. ASAIO J, Sep-Oct 1997, 43(5) pM567-71. (Yamazaki K, Mori T, Tomioka J, et al.)